Quantifying the relative importance of transcellular and paracellular ion transports to coral polyp calcification
نویسندگان
چکیده
*Correspondence: Sönke Hohn, Systems Ecology Group, Theoretical Ecology and Modelling, Leibniz Center for Tropical Marine Ecology, Fahrenheitstraße 6, 28359 Bremen, Germany e-mail: soenke.hohn@ zmt-bremen.de Ocean acidification due to rising atmospheric pCO2 slows down coral calcification and impedes reef formation, with deleterious consequences for the diversity of reef ecosystems. Such interactions contrast with the capacity of corals to actively regulate the chemical composition of the calcifying fluid where calcification occurs. This regulation involves the active transport of calcium, bicarbonate, and hydrogen ions through epithelium cells, the transcellular pathway. Ions can also passively diffuse through intercellular spaces via the paracellular pathway, which directly exposes the calcifying fluid to changes in ocean chemistry. Although evidence exists for both pathways, their relative contribution to coral calcification remains unknown. Here we use a mathematical model to test the plausibility of different calcification mechanisms also in relation to ocean acidification. We find that the paracellular pathway generates an efflux of calcium and carbonate from the calcifying fluid, causing a leakage of ions that counteracts the concentration gradients maintained by the transcellular pathway. Increasing ocean acidity exacerbates this carbonate leakage and reduces the ability of corals to accrete calcium carbonate.
منابع مشابه
Plasticity of coral physiology under ocean acidification
Coral reefs are oases of life in the oceans, harbouring more than a quarter of all marine species. These vibrant ecosystems are founded on reef structures that are built by the CaCO3 skeletons of “stony” scleractinian corals. While productive and biodiverse, coral reef ecosystems are sensitive to many elements of global environmental change, including “ocean acidification” which impairs the cap...
متن کاملATP Supply May Contribute to Light-Enhanced Calcification in Corals More Than Abiotic Mechanisms
Zooxanthellate corals are known to increase calcification rates when exposed to light, a phenomenon called light-enhanced calcification that is believed to be mediated by symbionts’ photosynthetic activity. There is controversy over the mechanism behind this phenomenon, with hypotheses coarsely divided between abiotic and biologically-mediated mechanisms. At the same time, accumulating evidence...
متن کاملParacellular permeability of bronchial epithelium is controlled by CFTR.
In normal airway epithelium, the cystic fibrosis transmembrane conductance regulator (CFTR) transports Cl(-) ions to the apical surface of the epithelium paralleled by the flow of water through transcellular and paracellular pathways. The hypothesis was tested whether CFTR not only regulates the transcellular but also the paracellular shunt pathway. Therefore, we performed measurements of trans...
متن کاملAn aposymbiotic primary coral polyp counteracts acidification by active pH regulation
Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medi...
متن کاملSources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis.
The sources and mechanisms of inorganic carbon transport for scleractinian coral calcification and photosynthesis were studied using a double labelling technique with H(14)CO(3) and (45)Ca. Clones of Stylophora pistillata that had developed into microcolonies were examined. Compartmental and pharmacological analyses of the distribution of(45)Ca and H(14)CO(3) in the coelenteron, tissues and ske...
متن کامل